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ABSTRACT All data in a space-ordered or time-
ordered series are always observed for a finite
distance or time. A sample variance of the data
represents a formalized means of capturing the extent
of observed variations over a finite interval. Different
types of variances abound and for the existence of a
"true" particular variance, assumptions are made
regarding ergodicity, stationarity and statistical
independence of the random variables. This writing
is not about variance per se but rather about the fact
that proper estimations of variance come from
understanding the implications of these basic
assumptions. In particular, there is usually an
underlying assumption of ergodicity. Ergodicity
means that we treat one statistical average as an
ensemble of smaller statistical averages. If we use
the ergodic assumption within a data set, then we
acknowledge its generalization as an included
assumption for data outside the set, namely before
and after, in the case of a time series. Ergodicity
implies that any series will have a likelihood of
recurrence which inversely depends on the number of
independent observations. If only one series is ever
observable, absolute recurrence of that series is the
consequence under the implied assumption of
ergodicity and an assumption that a "true" variance
indeed exists. This yields the model that time-
ordered data may be treated as circular or wrapped.

Mathematical formalisms such as a sample variance
(or any estimator) are based on assumptions involving
what might happen if given infinite time. These
formalisms can easily be misinterpreted and even
misunderstood. Therefore, I clarify the implications
of specific infinite-time variance-related concepts in
what I hope is a compact, speculative manner and
style.
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INTRODUCTION

The circular representation of two-dimensional
measurements means that one of the coordinates is
wrapped so that the endpoints of the coordinate
match. This paper focusses on the notable example
of measurements with respect to time. If the
measurements derive from physical systems described
as having periodicity, circularity, or any of the set of
wave-like observations, then we assume that
periodicity underlies a time-series measurement.
Fourier analysis proceeds from this assumption.
Building a model of the observation is then driven by
a search for the nature of this periodicity which was
assumed. Furthermore we might go further and
infinitely extend and circularly represent the finite
time series so that the measurement is recurrent for
all time again because periodicity is an assumed
property of the data set. This is precisely what is
done for most frequency-domain representations of a
time series. There is a vast literature on Fourier
analysis techniques. See for example [Percival and
Walden, 1992] for a comprehensive review.

The assumption of periodicity as underlying a time
series is often physically correct. For example using
Fourier analysis to model the motion of an orbiting
satellite, the motion of underwater ocean currents, or
the current in a resonant electronic circuit seems
plausible. But here is a major problem. What if we
are not given a basis for assuming that periodicity is
intrinsic to the data? What if we are not at liberty to
assume any known deterministic cause whatsoever for
that matter? Then we resort to a model that can be
used to calculate a probability of a future value lying
between two calculable limits which is based on past
values. It is formally called a stochastic model [Box
and Jenkins, 1970]. In other words, in analyzing a
time series as non-deterministic functions, we regard
it as a realization of a stochastic process, one
supposedly dependent on chance within formalized
limits given by past information. I claim however
that the interpretation of a stochastic process
inadvertently includes a fundamental assumption,
namely ergodicity.  This paper discusses the



appropriateness of an assumption of ergodicity and
shows that we can infinitely extend and circularly
represent finite periodic processes and, in addition,
finite random or stochastic processes under such an
assumption.

BASIC CONCEPTS

Science is the trained observation and interpretation
of a part of something based on the fundamental
principle that everything is contained in or
generalized from any part of itself. See for example
[Poincaré, 1912]. This assumes that order and
consistency are a part of all that we observe.
Basically, scientists try to predict events based on a
model derived from limited observation.  The
purpose of models is prediction. For example, every
measurement of the phase difference x(t) between two
clocks, or its derived frequency difference y(t) has a
beginning at, say, t, and an ending at, say, ty.
Furthermore, the values of x(t) or y(t) are always
sampled, preferably equispaced, in intervals of, say,
At. A useful figure of merit is frequency stability,
which is an estimate of the variance of y(t) from this
limited view of the data. I say "estimate" in the
sense that the true variance requires that we somehow
obtain all the data for all time, a physical
impossibility requiring infinite time and infinitesimal
At spacing. If we remove systematic trends so that
to the best of our available knowledge any value of
x(t) or y(t) is unrelated to any other value, then the
residuals of x(t) or y(t) are said to be processes that
are random, and their variance remains more or less
constant and independent of when and for how long
we have made observation. There is, therefore,
some expectation that the degree of deviation within
x(t) or y(t) has fixed limits. The methodology is
depicted in figure 1. I will not pursue the issue that
the assumption of continuous randomness is,
however, idealistic and that "expecting randomness"
is a contradiction of itself.

Practically speaking, all that we can do is obtain a
data set from t, to ty; sampled at At intervals. We
say that we ignore everything else, but in fact we
must be definite about what we mean by and the
expectations of the "ignored" data. Granted, the goal
of statistical analysis in many cases is to model at
least two elements, the deterministic and stochastic
processes, so that we can somehow know within
finite bounds the "unmeasurable" part of the data
(outside our measurement time) without actually
measuring it. This is what we do with an accurate
model. But besides ignoring the turn-on/turn-off
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effects at 1, t;, and At, ignoring the unmeasured or
unmeasurable data strictly means in the usual sense
that we are assuming that it is noiseless with zero
mean as shown in figure 2. With surprising
regularity, traditional statistical treatments do not
address properly the assumptions of (1) noiseless zero
mean up to t,, (2) the effect of turn-on at ty,, (3)
sampling at At, (4) the effect of turn-off at t;, and
(5) the effect of noiseless zero-mean after ty;.

WHAT WE KNOW:

This is what is
not measured

This is what is
measured

This is not
measured

Figure 1

In every sense, "estimating" the variance is akin to
estimating what the rest of the unmeasurable data are.
So why assume from the outset that the rest of the
data are noiseless with zero mean? Obviously this is
not a good model. As I will point out, we never
rightfully use this model, but worse yet, we
erroneously might think we are using it.

WHAT WE SOMETIMES THINK:
-——® | T | + o —
At
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We assume noiseless, Thisis whatis We assume noiseless,
zero-mean data for all measured zero-mean data for all
time prior to to time after ty
Figure 2
ERGODICITY

We assume that the outcome of flipping a coin ten
times is equivalent to flipping ten coins all at once.
The property is called "ergodicity.” When dealing
with a population, this is a reasonable starting point.
Applied to a "time series," a stationary random
process is defined as "ergodic" if all types of
ensemble averages are interchangeable with the
corresponding time averages. Thus in "ergodic"
processes, the averages across an ensemble are equal
to the averages over time of a single function of



infinite extent.!  For example, given the single
function y(t), with zero mean, we have
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where o? is a type of average called the standard
variance and the form of eq. (1) yields the variance
spectrum. By "spectrum" we mean that y(t) is
ordered or arrayed by an independent varying
component, in this case "T" which is the time
interval from some origin. Its reciprocal (frequency)
can be used as the basis for assigning coefficients of
a Fourier series to determine the spectral components
in y(t) [Bingham, Godfrey, Tukey, 1967].

Let y(t]n) represent the value of the nth sample
function drawn from the populationy at time t. Ify
is ergodic, then we have (by definition):
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for any specific time series n in the population y.
This must be equal to the variance at one specific
instant t across the ensemble of sample functions (that
is, all values of y at one instant t). This variance can
be written as
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eq (1) and eq (2) say that the true value of the
standard variance of the entire data is equivalent to
the average of variances of finite length = T as
shown in figure 3. One activity observed forever has
an equivalence to a finite observation as shown in
figure 4.

Types of statistical measurements of all the data for all time,

+un4.

ERGODIC IF
THESE AHE
Ty i

\\\ A ///<_J

Types of statistical measurements of the data over *T*
and then averaged over all T's.

Figure 3

The equality of eq (1) and eq (2) is the ergodic
hypothesis when expressed as eq (3). By "equality,"
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I mean that within a statistical uncertainty given by
say, a standard deviation over many samples which
test the hypothesis, I cannot tell that the expressions
are not equal in the limit given.

We say the finite observations are statistically
independent if the measurement times are different,
that is, if no two measurements over T overlap.
Then the time average over one infinite record is
equivalent to an ensemble average of finite records of
length T. Of course, the concept of a true variance
is an idealization since it implies that we have
collected data infinitely, a physical impossibility.
Interestingly, ergodic theory originated from the
opposite view that an ensemble of infinite members
can be viewed as one member for all time as shown
in figure 4.

‘Same observed activity
for time T.

One observed activity for all time.
< -0

ARSI AN

et
i

Assumption of ergodicity makes these equivalent

Figure 4

Ergodic theory originated in the mid-1920’s from
experiments in classical statistical mechanics. At that
time, surmising the statistical properties of a single
particle was virtually impossible, and experiments
involved a large number of particles or members of
an ensemble. It was verifiable by experiment that in
most cases and under proper conditions, ensemble
statistics were approximately equal to time-averaged
statistics for a single particle or member.
Mathematicians attempted to prove this for arbitrary
data rather than for observations in statistical
mechanics.  Ergodic theory was the subject of
widespread mathematical interest for a fairly brief
period of time from the 1930’s to 1950°s. Ergodicity
was never proved to be true in all situations but was
assumed in many situations. Physicists accepted it
based on seemingly sufficient mathematical
tractability, and mathematicians accepted it because
of experimental results. Judging from events,
ergodicity (eq (3)) was eagerly accepted as a way to
replace phase statistics by time statistics. By the
1960’s, ergodic theory was an accepted model and
was not pursued seriously thereafter, and the



remaining unproven aspects were left more or less
hanging [Halmos, 1956].

The conditions for ergodicity are related to the
uniformity in the data and measurement procedures.
The only test for ergodicity is that any given
statistical average is uniformly the same over any
interval throughout a given interval. There are many
decidedly nonergodic situations. For example, we
cannot combine the time readings of an ensemble of
different clocks and view them as one clock unless
the readings have identical statistical averages. In
any application nonergodicity of one time-series just
means that the random numbers concerned are, in
fact, an artificial union of a number of distinct and
otherwise (ergodic) stationary sequences [Yaglom,
1987]. An important consideration in frequency
metrology is whether the power-law of the fractional
RMS frequency stability changes with scale (or
averaging time 7). If so, the series is clearly non-
ergodic.

In practice, we cannot realize the exact limit of eq (3)
and must resort to a finite version. This is a source
of uncertainty, and, by all rights, eq (3) should be an
approximation given as

T
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But then questions are raised regarding the degree
and conditions of the approximation.
Experimentalists working under deadlines eventually
say that close emough is good enough. But the
assumption of equality in eq (4) has dramatic
implications when applied to any data. And in
problems involving time-series data, ergodicity has
been regularly assumed, perhaps properly or perhaps
not. For one important statistical measure, the
variance, the assumption of ergodicity applied to any
finite observation of ordered deviates is central to
many other properties based on the variance.

Our observed time series shown in figure 2 is an
ensemble consisting of one measurable member,
namely from t, to ty;. We might think all other
members are zero-valued. Any infinite time average
of variance of such an ensemble (represented as
either eq (1) or eq (2) will naturally approach O
because we are dividing a finite sample by co. But
in the case here, I am assuming an infinite sample,
which in the limit is supposed to converge to a
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nonzero value, its so-called true value. Hence our
assumption that all other members are zero must not
be correct.

What assumption regarding the unobservable events
is or should be made when computing any type of
nonzero average for a finite record over T (since the
infinite average cannot be zero in every case)? The
possibilities are that the unobservable events (those
outside our observation window) are either different
(possibly zero) or the same. Zero as shown is not
possible based on our assumption that a nonzero
variance must still exist when we extend our
observation period to infinite time. If the
unobservable events are arbitrarily different, then I
argue that there is less and less we can say about the
events as we imagine the observation period to be
lengthened. And over infinite time, we know
nothing. Saying with great mathematical abstraction
the degree to which these outside events "behave
like" or "are similar to" the observed events is a trap
of sorts in which we are denying the obvious; that is,
we unknowingly project some expectation of
"sameness" onto the unobserved events. At a
fundamental level, we are predisposed to thinking that
a future possibility (our imagination) is similar to or
consistent with the record of the past (our memory).
But imagination which is dependent on memory in
any way is misleading. That which is imagined
becomes nothing more than a goal or expectation.

In short, if the unobservable (future) events are
different, there is nothing we can say about them if
the events derive from complicated systems. This is
the basis of randomness. The assumption then is that
we commonly (and inadvertently) assume that the
measurements are identical to the one we observe no
matter when we observe (a condition of stationarity).
This is shown in figure 5 as the same observed
measurements from t, to ty; and is repeated for all
time with length T prior to t, and after ty;. This
assumption satisfies the conclusion that any finite,
nonzero average is exactly its equivalent infinite
average. Of course, any number of different
processes can yield an identical, specific average.
But it is not our privilege to simply create ad hoc any
random process yielding same specific averages.
Hence, we conclude that the observation is
everywhere recurrent under an ergodic hypothesis
given by eq (3) and shown in figure 6.

Without provocation, we accept that conclusions are
derived and built from assumptions. I must point
out, though, that this is not what I am doing here.
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We must assume data sthe  Thisis whatis  We must assume data is the
same for all time prior to t,, measured same for all time after t,,

Figure 6

Here I am simply deriving a different view of an
assumption from an existing assumption. That the
data in an observation window repeat themselves
outside the observation window is an assumption
derived from the common assumption of ergodicity.
Furthermore, one assumption is not so much derived
from the other as both are the same assumption.
Implicit throughout subjects on data analysis is the
pervasive notion of extended periodicity, yet
admitting this as applied directly to the observed data
seems somehow untenable. Frankly, the notion is
very tenable and leads to the practical consequence
that we can represent the data as circular as shown in
figure 7.

A finite observation period T is always a high-pass
filter that is insensitive to any change slower than T.
A normal starting point is that the ergodic hypothesis
requires stationarity of data. Determining
convergence, divergence, or stationarity of data
requires that we are at liberty to change T and see the
resultant change, if any, in a statistical average. As
profound as it seems, however, stationarity, is a
condition of our chosen models and not actual data
[Barnes, et al., 1971]. The assumption of stationarity
is satisfied here by the fixed finite period of
observation. The circular representation derives
wholly from the ergodic assumption, and stationarity
is maintained. Therefore, in the end, it does not
matter if we decide that the actual data are stationary
or not. The circular model is stationary.

As is always true, it is up to the reader to assign
meaning to a representation or model. At least three
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Figure 7

aspects are up for consideration regarding the circular
model: (1) Is the model rich enough to include other
accepted similar models? (2) Is the model plausible
and satisfying in some sense? (3) Is it practical, and
how can it work for us? I would like to add a fourth
consideration, simplicity. It behooves us to pick
simple models.

OTHER MODELS

That we can rightfully assume that a finite time series
of random variables recur to an arbitrarily long extent
are corroborated by several related, notable
examples:

1. Mathematical reasoning proceeds from the
particular to the general as inductive
reasoning. In the asymptotic limit of
inductive reasoning, we proceed from the
finite to the infinite and must revert to
"reasoning by recurrence”; that is, any finite
succession can only be deemed as recurring
to an infinite extent [Poincaré, 1912].

2. Any spatial or temporal measures in which
the endpoints can be matched without
discontinuity are said to be "circular.” All
analysis can proceed from an assumption of
circularity.  Endpoint mismatches affect
statistical averages only by a scaling factor.
See [Bloomfield, 1976] and the discussion
on smooth functions.

3. A finite, bounded standing wave can be
viewed as counter-propagating travelling
waves of arbitrarily long extent.  The
extended distance to any "virtual" boundary
is always a rational multiple of the actual



boundary.
1963].

See, for example, [Churchill,

4. For a finite observation period, the method
of complex demodulation states that data can
be viewed as having in-phase and phase-
quadrature components. We must extend
the time series by at least half its length to
completely account for the phase-quadrature
component [Bloomfield, 1976].

5. In computing the power spectrum,
commonly used digital processing
instruments treat a finite time series as a
"block" which is periodic and infinitely
extended because all variances still properly
converge if given arbitrarily more
independent blocks [Welch, 1967].

6. Formulations involving the Fourier
transform assume that both discrete
continuous functions {y,} and their discrete
Fourier transforms {Y,} are circular
(periodic) in the sense that evaluations of the
functions outside the range k=1, 2, 3,....M
will yield results modulo M [Otnes and
Enochson, 1978].

PLAUSIBILITY

At first glance, it appears that we cannot use this
model of recurrence because our experience is
inconsistent with a hypothesis that activity recurs; that
is, if we wait, the same thing happens. So an
experience-based model suggests that something
different can (in fact, usually does) happen. But it is
known in physics and mathematics that acting
exclusively and exactly on the appearance of our
experience leads to inconsistency in the extreme. For
example, pure deductive logic can lead to
contradictory results from one set of assumptions and
one set of rules [GOdel, 1931]. In fact, it is the
principle of causality which is under consideration.
Any measurement is not the effect of what precedes
it but rather is the effect of a set of conditions. It has
been argued that what we see as activity actually
remains fixed, and it is only a set of conditions,
principally the observer’s viewpoint, which changes
randomly. Thus he incorrectly perceives that the
observation itself is changing. It follows that an
inconsistency within a model is not an inconsistency
at all but rather perhaps only a different view of the
same model. Recurrent or nonrecurrent behavior is
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within the observer’s subjective perception
[Hofstadter, 1979]. All the same, specifically, no
one can honestly say whether a true variance for a
time series exists, yet we take on faith that we are
"estimating" it in the following way. Virtually every
thesis on the estimation of variance starts with three
statements taken as fact: (1) a "true" variance exists,
when (2) time is infinitely extended, and (3) we do
not know (1) because we cannot realize (2). We
argue that we could know (1) if our observation were
infinite in time. But what constitutes an infinite
observation time? Is it from the big bang (call it t,)
to now (call it ty)? No, that itself is a finite
comprehension. Is every event prior to the moment
of the big bang classed as uninteresting or 0 as in
figure 2? Then all variances (for that matter, all
statistical averages) approach 0, and the concept of a
"true" variance is a hoax. Hence, whatever we
determine as a variance for any observation period is
not an estimate at all but is in fact the true (and only)
variance for that observation time, however short or
long the time may be.

The only correct answer to the question of the
existence of a true variance in the statistically pure
sense is to say, "I don’t know." Furthermore, if in
any way it is implicit that the estimate of a variance
for an observation time T is taken to be the true
variance (which is a reasonable assertion), then the
variables measured cannot be treated as independent
of those not measured at any other imagined
observation time. In summary, all statistical tools
applied to a time series based on the assumption of
ergodicity will, taken as a whole, require that the
actual finite measurement repeat itself for all times t.

ENDPOINT MISMATCH

REMOVED

Figure 8



PRACTICALITY

With the circular representation presented here,
residual data (that is, data with trends removed)
which are wrapped often will have the endpoints miss
each other, that is, not match. This is shown in
figure 8. The discontinuity of the endpoint mismatch
may produce components outside of the physical,
system-related, or measurement bandwidth and will
create an artifact and a commensurate error in a
statistical average such as variance. Furthermore,
endpoint mismatch affects overall scaling. More
accurate results are obtained if the ends do not miss
cach other when data is wrapped. For computing
statistical averages, we can arrange coordinates so
that the ends will match [Howe, to be published].2

For any observation period starting at time t,,
continuing with length T, and ending at ty;, the next
point after ty; (if our period is extended by an interval
At) is t,. In other words, the epoch which marks the
end of our observation allows us to predict the next
point, the variable at t, since t, starts the next
repetition. Since this next variable is predictable, it
is not a random variable, and the occurrence of the
end of the actual period forces a correlation of ty
with t, The next point is the future, and is outside
our window of observation, but at any instant, the
next point is surmised to be the one at the beginning
time t,. Furthermore any piece of the total coordinate
of time is self-contained and can be treated as isolated
from any events outside of that piece. Any
observation is treated as circular as shown in figure
7. Now in the extreme case, suppose t, marks the
moment of creation or the big bang and duration T
extends to now. Therefore, ty; matks the present
(now). The end then becomes the beginning. This
is not to say that all events repeat themselves nor that
periodicity exists everywhere. Quite the contrary.
Random events are not redundant and repeated; each
event is unique and need not have any determinable
cause (satisfying the observer, at any rate). That
periodicity exists everywhere (including outside our
observation window) would be a man-made
assumption.> Let me emphatically state that the
conclusion that the end and beginning are one derives
from a reasonable assumption that all of the time we
can possibly comprehend is still a finite observation
time. This model of time correlates "now" with our
chosen time origin, or if you wish, the so-called
"beginning of time." This concept suitably derives
from the question, "Do unobservable events exist?"
For the purpose here, I assume they do not, since

343

there can be no cognizance of such events. This is
opposed to many physicists’ views on realism and
takes the stand that a thing does not exist for the
observer before his measurement of it. I believe that
the observer, however, does not give it its existence,
so the future is not given any attribute prior to its
observation. Needless to say, there is a great deal
left for further philosophical discussion.* However,
if we accept the hypothesis of ergodicity and accept
that a true variance indeed exists, then we are at
liberty to treat finite time-series data {x,} as circular.
We can wrap the data so that X\, ; = X;, and this is
a practical tool. Any resultant mismatch of x; and
XM produces undesirable effects and ought to be
treated as a separate element in our overall model of
the observed process being measured.

Is there a coordinate system or reference frame in
which time-ordered events can be viewed as
nonrepeating or noncircular? This can be answered
with an analogous geometrical question regarding
space-ordering: Is there a reference frame in which
a line (of infinite length and consisting of an infinite
number of points) can be viewed on its end, so to
speak, as a single point? No. We assume that a line
cannot be viewed on end. If it is nowhere viewable
as anything except a line, Einstein suggested that it
comes back on itself. Every end of the line is also
its beginning. We define absolute straightness as a
minimum distance between two points in space. We
are predisposed to thinking that the line cannot curve
around; it is straight, and infinitely long. If space is
not curved, how can this be? If space is curved, then
how and to what extent is it curved so that everything
comes back on itself (since the line becomes a
geodesic of unknown dimension)? Perhaps it is not
describable by finite human comprehension except to
say that infinite space is somehow circular in that it
comes back on itself, but any piece is somehow
straight by every conceivable test. And all time vs.
finite periods may be similarly viewed.?

CONCLUSION

Predicting time-dependent measures means predicting
a future which is always outside qof our observation
window. Observables have varying degrees of
reproducibility, hence predictable reoccurrence.
There are accurate models for fairly simple physical
realizations. Randomness, however, is associated
with nondeterministic, complex systems in which
simple trends have been modeled and removed. This
paper has described the appropriateness of wrapping



a finite time-dependent measurement as a tool for the
determination of statistical averages such as the
variance of non-deterministic processes. It behooves
us to pick uncomplicated models. Conditions which
satisfy an assumption of ergodicity yield the very
simple model that time-ordered data may be treated
as circular or wrapped. An endpoint mismatch must
be removed because it affects statistical averages by
a transient and by a scaling factor which can be a
dominant source of errors. Future analysis will
include the circular representation (wrapping the data)
if appropriate. A remaining topic is whether the
ergodic assumption is reliable for arbitrary constant
power-law processes such as the kinds used to
characterize frequency stability.
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FOOTNOTES

IThe general case of nth-order function yields
[Panter, 1965]:

o

Xt = f x"p (x,0)dt

—oco

which is equal to the time average of x" (py(x.,t) is
the probability density of x® and is assumed to be
uniform-random and normalized to T):

o _ lim 1

" =
T-pT

T
f [x(O1"dt
-T

so that %" = x™

21t is thoroughly recognized that the start and stop of
the observation window can adversely affect the
outcome of particular analyses. For example, an
assumption that periodicity is within some set of data
might be physically correct. Therefore, Fourier
analysis is suitable. Smoothly tapering the ends of a
series to zero is often done to reduce errors at the
expense of analysis resolution in the periodic
extension of the observation, a condition brought
about in the implementation of the Fourier transform
integral.
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3Joseph Fourier in 1822 rigorously treated the
suggestion of Pythagoras, Kepler, Galileo, and
Newton that wave or cyclical motion was everywhere
in nature. So far it holds that all observable activity
can be broken down into wave-like building blocks.
Many types of analysis proceed from this assumption.

4Certainly we must reconcile whether the existence of
anything depends exclusively on its finite observation.

SA long-standing view is held that space and time are
sensible geometries for all human experience, but that
they are different forms, one for the outer sense
(space) and one for the inner (time) [Kant, 1781}.
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